माना $S =\left\{\theta \in[-2 \pi, 2 \pi]: 2 \cos ^{2} \theta+3 \sin \theta=0\right\}$ है, तो $S$ के अवयवों का योगफल है :
$\frac{{13\,\pi }}{6}$
$2\pi $
$\pi $
$\frac{{5\,\pi }}{3}$
$\cos x=\frac{1}{2}$ को हल कीजिए।
यदि $\theta $ और $\phi $ न्यूनकोण को सन्तुष्ट करते हैं व $\sin \theta = \frac{1}{2},$ $\cos \phi = \frac{1}{3},$ तो $\theta $+$\phi $ का मान है
मान लीजिये कि $\alpha$ चर वास्तविक संख्या है जो $\pi / 2$ का पूर्णांकीय गुणित $(integral\,multiple)$ नहीं है। दिये गए तत्समक $(equality)$ $\frac{\sin (\lambda \alpha)}{\sin \alpha}-\frac{\cos (\lambda \alpha)}{\cos \alpha}=\lambda-1$ को संत्ष्ट करने वाली कितनी वास्तविक संख्याएँ $\lambda$ हैं?
यदि ${\left( {\frac{{\sin \theta }}{{\sin \phi }}} \right)^2} = \frac{{\tan \theta }}{{\tan \phi }} = 3,$ तो $\theta $ व $\phi $ के मान हैं
माना $S=\left\{\theta \in(0,2 \pi): 7 \cos ^2 \theta-3 \sin ^2 \theta-2\right.$ $\left.\cos ^2 2 \theta=2\right\}$ है। तब सभी समीकरणों $x ^2-2\left(\tan ^2 \theta+\cot ^2 \theta\right) x +6 \sin ^2 \theta=0, \theta \in S$ के मूलों का योग है $..............$